domingo, 7 de diciembre de 2008

Sistema binario


El sistema binario

En matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Los ordenadores trabajan internamente con dos niveles de voltaje, por lo que su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).

Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que a su vez pueden ser representados por cualquier mecanismo capaz de estar en dos estados mutuamente exclusivos. Las secuencias siguientes de símbolos podrían ser interpretadas todas como el mismo valor binario numérico:1 0 1 0 0 1 1 0 1 0
- - - - -
x o x o o x x o x o
y n y n n y y n y n
El valor numérico representado en cada caso depende del valor asignado a cada símbolo. En un ordenador, los valores numéricos pueden ser representados por dos voltajes diferentes y también se pueden usar polaridades magnéticas sobre un disco magnético. Un "positivo", "sí", o "sobre el estado" no es necesariamente el equivalente al valor numérico de uno; esto depende de la arquitectura usada.
De acuerdo con la representación acostumbrada de cifras que usan números árabes, los números binarios comúnmente son escritos usando los símbolos 0 y 1. Cuando son escritos, los números binarios son a menudo subindicados, prefijados o sufijados para indicar su base, o la raíz. Las notaciones siguientes son equivalentes:
100101 binario (declaración explícita de formato)
100101b (un sufijo que indica formato binario)
100101B (un sufijo que indica formato binario)
bin 100101 (un prefijo que indica formato binario)
1001012 (un subíndice que indica base 2 (binaria) notación)
%100101 (un prefijo que indica formato binario)
0b100101 (un prefijo que indica formato binario, común en lenguajes de programación)

Operaciones con números binarios

Suma de números Binarios

Las posibles combinaciones al sumar dos bits son:
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10 100110101
+ 11010101
———————————
1000001010
Se puede convertir la operación binaria a una operación decimal resolver la decimal y del resultado de la operación decimal se convierte a un resultado (número) binario.
Operamos como en el sistema decimal: comenzamos a sumar desde la derecha, en nuestro ejemplo, 1 + 1 = 10, entonces escribimos 0 en la fila del resultado y llevamos 1 (este "1" se llama
acarreo o arrastre). A continuación se suma el acarreo a la siguiente columna: 1 + 0 + 0 = 1, y seguimos hasta terminar todas la columnas (exactamente como en decimal).

Resta de números binarios

El algoritmo de la resta en binario es el mismo que en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia.
Las restas básicas 0 - 0, 1 - 0 y 1 - 1 son evidentes:
0 - 0 = 0
1 - 0 = 1
1 - 1 = 0
0 - 1 = equivale a 10 - 1 = 1. El dígito 1, se toma prestado de la posición siguiente.
La resta 0 - 1 se resuelve, igual que en el sistema decimal, tomando una unidad prestada de la posición siguiente: 10 - 1 = 1 y me llevo 1, lo que equivale a decir en decimal, 2 - 1 = 1. Esa unidad prestada debe devolverse, sumándola, a la posición siguiente. Ejemplos: 10001 11011001
-01010 -10101011
—————— —————————
00111 00101110
En sistema decimal sería: 17 - 10 = 7 y 217 - 171 = 46. A pesar de lo sencillo que es el procedimiento, es fácil confundirse. Tenemos interiorizado el sistema decimal y hemos aprendido a restar mecánicamente, sin detenernos a pensar en el significado del arrastre. Para simplificar las restas y reducir la posibilidad de cometer errores hay varias soluciones:
Dividir los números largos en grupos. En el siguiente ejemplo, vemos cómo se divide una resta larga en tres restas cortas: 100110011101 1001 1001 1101
-010101110010 -0101 -0111 -0010
————————————— = ————— ————— —————
010000101011 0100 0010 1011
Utilizando el
complemento a dos. La resta de dos números binarios puede obtenerse sumando al minuendo el complemento a dos del sustraendo. Veamos algunos ejemplos. Hagamos la siguiente resta, 91 - 46 = 45, en binario: 1011011 1011011
-0101110 C2 de 46 = 1010010 +1010010
———————— ————————
0101101 10101101
En el resultado nos sobra un bit, que se desborda por la izquierda. Pero, como el número resultante no puede ser más largo que el minuendo, el bit sobrante se desprecia.
Un último ejemplo: vamos a restar 219 - 23 = 196, directamente y utilizando el complemento a dos: 11011011 11011011
-00010111 C2 de 23 = 11101001 +11101001
————————— —————————
11000100 111000100
Y, despreciando el bit que se desborda por la izquierda, llegamos al resultado correcto: 11000100 en binario, 196 en decimal.
Utilizando el complemento a 1. La resta de dos números binarios puede obtenerse sumando al minuendo el complemento a uno del sustraendo y a su vez sumarle el bit de overflow (bit que se desborda).

Producto de números binarios

El algoritmo del producto en binario es igual que en números decimales; aunque se lleva cabo con más sencillez, ya que el 0 multiplicado por cualquier número da 0, y el 1 es el elemento neutro del producto.
Por ejemplo, multipliquemos 10110 por 1001: 10110
1001
—————————
10110
00000
00000
10110
—————————
11000110
En sistemas electrónicos, donde se suelen utilizar números mayores, no se utiliza este método sino otro llamado
algoritmo de Booth.

División de números binarios

La división en binario es similar a la decimal, la única diferencia es que a la hora de hacer las restas, dentro de la división, estas deben ser realizadas en binario. Por ejemplo, vamos a dividir 100010010 (274) entre 1101 (13): 100010010 1101
——————
- 0000 010101
———————
10001
- 1101
———————
01000
- 0000
———————
10000
- 1101
———————
00111
- 0000
———————
01110
- 1101
———————
00001

Conversión entre binario y decimal, binario y octal, y binario y hexadecimal

Binario a decimal
Para realizar la conversión de binario a decimal, realice lo siguiente:
Inicie por el lado derecho del número en binario, cada número multiplíquelo por 2 y elévelo a la potencia consecutiva (comenzando por la potencia 0).
Después de realizar cada una de las multiplicaciones, sume todas y el número resultante será el equivalente al sistema decimal.
Ejemplos:
110101 (binario) = 53 (decimal). Proceso: 1*(2) elevado a (0)=1
0*(2) elevado a (1)=0
1*(2) elevado a (2)=4
0*(2) elevado a (3)=0
1*(2) elevado a (4)=16
1*(2) elevado a (5)=32
La suma es: 53
10010111 (binario) = 151 (decimal). Proceso: 1*(2) elevado a (0)=1
1*(2) elevado a (1)=2
1*(2) elevado a (2)=4
0*(2) elevado a (3)=0
1*(2) elevado a (4)=16
0*(2) elevado a (5)=0
0*(2) elevado a (6)=0
1*(2) elevado a (7)=128
La suma es: 151
110111 (binario) = 55 (decimal). Proceso: 1*(2) elevado a (0)=1
1*(2) elevado a (1)=2
1*(2) elevado a (2)=4
0*(2) elevado a (3)=0
1*(2) elevado a (4)=16
1*(2) elevado a (5)=32
La suma es: 55
También se puede optar por utilizar los valores que presenta cada posición del número binario a ser transformado, comenzando de derecha a izquierda, y sumando los valores de las posiciones que tienen un 1.
Por ejemplo: el número binario 1010010 corresponde en decimal al 82 se puede representar de la siguiente manera: 64 32 16 8 4 2 1
1 0 1 0 0 1 0
entonces se suma los números 2, 16 y 64: 2
+16
64
----
82

Binario a decimal (Con decimal binario)
1. Inicie por el lado izquierdo, cada número multiplíquelo por 2 y elévelo a la potencia consecutiva a la inversa(comenzando por la potencia -1). 2.Después de realizar cada una de las multiplicaciones, sume todas y el número resultante será el equivalente al sistema decimal.
Ejemplos:
0.101001 (binario) = 0.640625(decimal). Proceso: 1*(2) elevado a (-1)=0.5
0*(2) elevado a (-2)=0
1*(2) elevado a (-3)=0.125
0*(2) elevado a (-4)=0
0*(2) elevado a (-5)=0
1*(2) elevado a (-6)=0.015625
La suma es: 0.640625
0.110111 (binario) = 0.859375(decimal). Proceso: 1*(2) elevado a (-1)=0.5
1*(2) elevado a (-2)=0.25
0*(2) elevado a (-3)=0
1*(2) elevado a (-4)=0.0625
1*(2) elevado a (-5)=0.03125
1*(2) elevado a (-6)=0.015625
La suma es: 0.859375

Decimal a binario
Se
divide el número decimal entre 2 cuyo resultado entero se vuelve a dividir entre 2 y así sucesivamente. Una vez llegados al 1 indivisible se cuentan el último cociente, es decir el uno final (todo número binario excepto el 0 empieza por uno), seguido de los residuos de las divisiones subsiguientes. Del más reciente hasta el primero que resultó. Este número será el binario que buscamos. A continuación se puede ver un ejemplo con el número decimal 100 pasado a binario. 100 _2
0 50 _2
0 25 _2 --> (100)10 = (1100100)2
1 12 _2
0 6 _2
0 3 _2
1 1
Otra forma de conversión consiste en un método parecido a la factorización en
números primos. Es relativamente fácil dividir cualquier número entre 2. Este método consiste también en divisiones sucesivas. Dependiendo de si el número es par o impar, colocaremos un cero o un uno en la columna de la derecha. Si es impar, le restaremos uno y seguiremos dividiendo entre dos, hasta llegar a 1. Después sólo nos queda tomar el último resultado de la columna izquierda (que siempre será 1) y todos los de la columna de la derecha y ordenar los dígitos de abajo a arriba. Y luego se haría un cuadro con las potencias con el resultado.
Ejemplo:1000
500
251 --> 1, 25-1=24 y seguimos dividiendo por 2
120
60
31
11 --> (100)10 = (1100100)2
Existe un último método denominado de distribución. Consiste en distribuir los unos necesarios entre las potencias sucesivas de 2 de modo que su suma resulte ser el número decimal a convertir. Sea por ejemplo el número 151, para el que se necesitarán las 8 primeras potencias de 2, ya que la siguiente, 28=256, es superior al número a convertir. Se comienza poniendo un 1 en 128, por lo que aún faltarán 23, 151-128=23, para llegar al 151. Este valor se conseguirá distribuyendo unos entre las potencias cuya suma den el resultado buscado y poniendo ceros en el resto. En el ejemplo resultan ser las potencias 4, 2, 1 y 0, esto es, 16, 4, 2 y 1, respectivamente.
Ejemplo: 20= 11
21= 21
22= 41
23= 80
24= 161
25= 320
26= 640
27= 1281 128 + 16 + 4 + 2 + 1 = (151)10 = (10010111)2

Decimal (Con decimales) a binario
Inicie por el lado izquierdo, cada número dividalo por 2 y si la parte entera queda mayor que 0 entonces en binario será 1 en caso contrario será 0
En caso de ser 1 para la siguiente división coja únicamente los decimales.
Después de realizar cada una de las divisiones, coloque los números que ha obtenido en orden de aparición.
Hay que tener cuidado con este método pues algunos números tienen una representación infinita o muy larga, por ejemplo el 0.1
Ejemplos:
0.3125 (decimal) = 0.0101(decimal). Proceso: 0.3125*2 = 0.625 => 0
0.625*2 = 1.25 => 1
0.25*2 = 0.5 => 0
0.5*2 = 1 => 1
En orden: 0101
0.625 (decimal) = 0.101(binario). Proceso: 0.625*2 = 1.25 => 1
0.25*2 = 0.5 => 0
0.5*2 = 1 => 1
En orden: 101

Binario a octal
Para realizar la conversión de binario a octal, realice lo siguiente:
1) Agrupe la cantidad binaria en grupos de 3 en 3 iniciando por el lado derecho. Si al terminar de agrupar no completa 3 dígitos, entonces agregue ceros a la izquierda.
2) Posteriormente vea el valor que corresponde de acuerdo a la tabla:
Número en binario
000
001
010
011
100
101
110
111
Número en octal
0
1
2
3
4
5
6
7
3) La cantidad correspondiente en octal se agrupa de izquierda a derecha.
Ejemplos:
110111 (binario) = 67 (octal). Proceso: 111 = 7
110 = 6
Agrupe de izquierda a derecha: 67
11001111 (binario) = 317 (octal). Proceso: 111 = 7
001 = 1
11 entonces agregue un cero, con lo que se obtiene 011 = 3
Agrupe de izquierda a derecha: 317
1000011 (binario) = 103 (octal). Proceso: 011 = 3
000 = 0
1 entonces agregue 001 = 1
Agrupe de izquierda a derecha: 103.

Octal a binario

Cada dígito octal se lo convierte en su binario equivalente de 3 bits y se juntan en el mismo orden. Ejemplo:
247 (octal) = 010100111 (binario). El 2 en binario es 10, pero en binario de 3 bits es Oc(2) = B(010); el Oc(4) = B(100) y el Oc(7) = (111), luego el número en binario será 010100111.

Binario a hexadecimal
Para realizar la conversión de binario a hexadecimal, realice lo siguiente:
1) Agrupe la cantidad binaria en grupos de 4 en 4 iniciando por el lado derecho. Si al terminar de agrupar no completa 4 dígitos, entonces agregue ceros a la izquierda.
2) Posteriormente vea el valor que corresponde de acuerdo a la tabla:
Número en binario
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Número en hexadecimal
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
3) La cantidad correspondiente en hexadecimal se agrupa de derecha a izquierda.
Ejemplos:
110111010 (binario) = 1BA (hexadecimal). Proceso: 1010 = A
1011 = B
1 entonces agregue 0001 = 1
Agrupe de derecha a izquierda: 1BA
11011110101 (binario) = 6F5 (hexadecimal). Proceso: 0101 = 5
1111 = F
110 entonces agregue 0110 = 6
Agrupe de derecha a izquierda: 6F5

Hexadecimal a binario
Ídem que para pasar de octal a binario, sólo que se remplaza por el equivalente de 4 bits, como de octal a binario.

No hay comentarios: